//------------------------------------------------------------------------------
// Pd Spectral Toolkit
//
// freqsieve~.c
//
// Assigns spectral data with greatest magnitude to the correct bin based on
// frequency in right inlet, optionally outputs unassigned data
//
// Created by Cooper on 8/5/12.
// Updated for 64 Bit Support in September 2019.
// Copyright (C) 2019 Cooper Baker. All Rights Reserved.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// headers
//------------------------------------------------------------------------------
// main header for pd
#include "m_pd.h"
// utility header for Pd Spectral Toolkit project
#include "utility.h"
// c standard library used for realloc and free
#include <stdlib.h>
// c standard library used for memset and memcpy
#include <string.h>
// disable compiler warnings on windows
#ifdef NT
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#endif
//------------------------------------------------------------------------------
// freqsieve_class - pointer to this object's definition
//------------------------------------------------------------------------------
static t_class* freqsieve_class;
//------------------------------------------------------------------------------
// freqsieve - data structure holding this object's data
//------------------------------------------------------------------------------
typedef struct freqsieve
{
// this object - must always be first variable in struct
t_object object;
// needed for CLASS_MAINSIGNALIN macro call in freqsieve_tilde_setup
t_float inlet_1;
// needed for signalinlet_new call in freqsieve_new
t_float inlet_2;
// pointer to temporary array for frequency assignment
t_float* freq_array;
// pointer to temporary array for magnitude assignment
t_float* mag_array;
// pointer to array for unassigned frequency data
t_float* freq_remain_array;
// pointer to array for unassigned magnitude data
t_float* mag_remain_array;
// pointer to array containing indices of data that needs to be zeroed in remainder arrays
t_float* zero_index_array;
// memory size of data vectors
t_float memory_size;
// sample rate of the patch we're in
t_float sample_rate;
// overlap of the patch we're in
t_float overlap;
// flag for remainder mode of this object
t_int remainder_flag;
} t_freqsieve;
//------------------------------------------------------------------------------
// function prototypes
//------------------------------------------------------------------------------
static t_int* freqsieve_perform ( t_int* io );
static t_int* freqsieve_perform_remainder( t_int* io );
static void freqsieve_dsp ( t_freqsieve* object, t_signal **sig );
static void freqsieve_overlap ( t_freqsieve* object, t_floatarg overlap );
static void* freqsieve_new ( t_symbol* symbol, t_int items, t_atom* list );
static void freqsieve_free ( t_freqsieve* object );
void freqsieve_tilde_setup ( void );
//------------------------------------------------------------------------------
// freqsieve_perform - the signal processing function of this object
//------------------------------------------------------------------------------
static t_int* freqsieve_perform( t_int* io )
{
// store variables from dsp input/output array
t_float* in1 = ( t_float* )( io[ 1 ] );
t_float* in2 = ( t_float* )( io[ 2 ] );
t_float* out1 = ( t_float* )( io[ 3 ] );
t_float* out2 = ( t_float* )( io[ 4 ] );
t_int frames = ( t_int )( io[ 5 ] );
t_freqsieve* object = ( t_freqsieve* )( io[ 6 ] );
// store values from object's data structure
t_float* freq_array = object->freq_array;
t_float* mag_array = object->mag_array;
t_float memory_size = object->memory_size;
t_float sample_rate = object->sample_rate;
t_float overlap = object->overlap;
// note
//--------------------------------------------------------------------------
// in re-blocked pd patches, sample rate is reported as parent
// sample rate multiplied by overlap factor
sample_rate = sample_rate / overlap;
// calculate the nyquist frequency
t_float nyquist = sample_rate * 0.5;
// signal vector iterator variable
t_int n = -1;
// assignment variables
t_float freq;
t_float mag;
// calculate number of hertz per bin ( frequency width )
t_float hz_per_bin = sample_rate / frames;
// temporary bin index variable
t_int bin_index;
// clear the temporary magnitude and frequency arrays
memset( freq_array, 0, memory_size );
memset( mag_array, 0, memory_size );
// the dsp loop
while( ++n < frames )
{
// store input samples
mag = in1[ n ];
freq = in2[ n ];
// discard frequencies above nyquist
if( freq > nyquist )
{
freq = 0;
}
// assign frequencies to bins
if( freq )
{
// calculate bin location of frequency
bin_index = ( freq / hz_per_bin );
// prevent negative results
bin_index = ClipMin( bin_index, 0 );
// assign frequency with higest magnitude to bin
if( mag >= mag_array[ bin_index ] )
{
freq_array[ bin_index ] = freq;
mag_array [ bin_index ] = mag;
}
}
}
// clear the output arrays
memset( out1, 0, memory_size );
memset( out2, 0, memory_size );
// copy temporary arrays to output arrays
memcpy( out1, mag_array, memory_size );
memcpy( out2, freq_array, memory_size );
// return the dsp input/output array address plus one more than its size
// to provide a pointer to the next perform function in pd's call list
return &( io[ 7 ] );
}
//------------------------------------------------------------------------------
// freqsieve_perform_remainder - the signal processing function of this object with remainder
//------------------------------------------------------------------------------
static t_int* freqsieve_perform_remainder( t_int* io )
{
// store variables from dsp input/output array
t_float* in1 = ( t_float* )( io[ 1 ] );
t_float* in2 = ( t_float* )( io[ 2 ] );
t_float* out1 = ( t_float* )( io[ 3 ] );
t_float* out2 = ( t_float* )( io[ 4 ] );
t_float* out3 = ( t_float* )( io[ 5 ] );
t_float* out4 = ( t_float* )( io[ 6 ] );
t_int frames = ( t_int )( io[ 7 ] );
t_freqsieve* object = ( t_freqsieve* )( io[ 8 ] );
// store values from object's data structure
t_float* freq_array = object->freq_array;
t_float* mag_array = object->mag_array;
t_float* freq_remain_array = object->freq_remain_array;
t_float* mag_remain_array = object->mag_remain_array;
t_float* zero_index_array = object->zero_index_array;
t_float memory_size = object->memory_size;
t_float sample_rate = object->sample_rate;
t_float overlap = object->overlap;
// note
//--------------------------------------------------------------------------
// in re-blocked pd patches, sample rate is reported as parent
// sample rate multiplied by overlap factor
sample_rate = sample_rate / overlap;
// calculate the nyquist frequency
t_float nyquist = sample_rate * 0.5;
// signal vector iterator variable
t_int n = -1;
// assignment variables
t_float freq;
t_float mag;
// calculate number of hertz per bin ( frequency width )
t_float hz_per_bin = sample_rate / frames;
// temporary bin index variable
t_int bin_index;
// clear the temporary magnitude and frequency arrays
memset( freq_array, 0, memory_size );
memset( mag_array, 0, memory_size );
memset( freq_remain_array, 0, memory_size );
memset( mag_remain_array, 0, memory_size );
memset( zero_index_array, 0, memory_size );
memcpy( mag_remain_array, in1, memory_size );
memcpy( freq_remain_array, in2, memory_size );
// the dsp loop
while( ++n < frames )
{
// store input samples
mag = in1[ n ];
freq = in2[ n ];
// discard frequencies above nyquist
if( freq > nyquist )
{
freq = 0;
}
// assign frequencies to bins
if( freq )
{
// calculate bin location of frequency
bin_index = ( freq / hz_per_bin );
// prevent negative results
bin_index = ClipMin( bin_index, 0 );
// assign frequency with higest magnitude to bin
if( mag >= mag_array[ bin_index ] )
{
freq_array[ bin_index ] = freq;
mag_array [ bin_index ] = mag;
// keep track of where assigned values came from
zero_index_array[ bin_index ] = n;
}
}
}
// reset signal vector iterator variable
n = -1;
// zero out the bin data that has been reassigned to new bins
while( ++n < frames )
{
freq_remain_array[ ( t_int )zero_index_array[ n ] ] = 0;
mag_remain_array [ ( t_int )zero_index_array[ n ] ] = 0;
}
// clear the output arrays
memset( out1, 0, memory_size );
memset( out2, 0, memory_size );
memset( out3, 0, memory_size );
memset( out4, 0, memory_size );
// copy temporary arrays to output arrays
memcpy( out1, mag_array, memory_size );
memcpy( out2, freq_array, memory_size );
memcpy( out3, mag_remain_array, memory_size );
memcpy( out4, freq_remain_array, memory_size );
// return the dsp input/output array address plus one more than its size
// to provide a pointer to the next perform function in pd's call list
return &( io[ 9 ] );
}
//------------------------------------------------------------------------------
// freqsieve_dsp - installs this object's dsp function in pd's callback list
//------------------------------------------------------------------------------
static void freqsieve_dsp( t_freqsieve* object, t_signal **sig )
{
// calculate memory size for realloc and memset
t_int memory_size = sig[ 0 ]->s_n * sizeof( t_float );
// store values for use in dsp loop
object->memory_size = memory_size;
object->sample_rate = sig[ 0 ]->s_sr;
if( object->remainder_flag )
{
// allocate enough memory to hold vectors of data
object->freq_array = realloc( object->freq_array, memory_size );
object->mag_array = realloc( object->mag_array, memory_size );
object->freq_remain_array = realloc( object->freq_remain_array, memory_size );
object->mag_remain_array = realloc( object->mag_remain_array, memory_size );
object->zero_index_array = realloc( object->zero_index_array, memory_size );
// dsp_add arguments
//----------------------------------------------------------------------
// perform routine
// number of passed parameters
// inlet 1 sample vector
// inlet 2 sample vector
// outlet 1 sample vector
// outlet 2 sample vector
// outlet 3 sample vector
// outlet 4 sample vector
// sample frames to process (vector size)
// pointer to this object
dsp_add( freqsieve_perform_remainder, 8, sig[ 0 ]->s_vec, sig[ 1 ]->s_vec, sig[ 2 ]->s_vec, sig[ 3 ]->s_vec, sig[ 4 ]->s_vec, sig[ 5 ]->s_vec, sig[ 0 ]->s_n, object );
}
else
{
// allocate enough memory to hold vectors of data
object->freq_array = realloc( object->freq_array, memory_size );
object->mag_array = realloc( object->mag_array, memory_size );
// dsp_add arguments
//----------------------------------------------------------------------
// perform routine
// number of passed parameters
// inlet 1 sample vector
// inlet 2 sample vector
// outlet 1 sample vector
// outlet 2 sample vector
// sample frames to process (vector size)
// pointer to this object
dsp_add( freqsieve_perform, 6, sig[ 0 ]->s_vec, sig[ 1 ]->s_vec, sig[ 2 ]->s_vec, sig[ 3 ]->s_vec, sig[ 0 ]->s_n, object );
}
}
//------------------------------------------------------------------------------
// freqsieve_overlap - sets the overlap factor for use in dsp calculations
//------------------------------------------------------------------------------
static void freqsieve_overlap( t_freqsieve* object, t_floatarg overlap )
{
if( overlap < 1 )
{
overlap = 1;
}
object->overlap = overlap;
}
//------------------------------------------------------------------------------
// freqsieve_new - instantiates a copy of this object in pd
//------------------------------------------------------------------------------
static void* freqsieve_new( t_symbol* symbol, t_int items, t_atom* list )
{
// create a pointer to this object
t_freqsieve* object = ( t_freqsieve* )pd_new( freqsieve_class );
// create a second signal inlet
signalinlet_new( &object->object, object->inlet_2 );
// create a float inlet to receive overlap factor value
inlet_new( &object->object, &object->object.ob_pd, gensym( "float" ), gensym( "overlap" ) );
// create two signal outlets for this object
outlet_new( &object->object, gensym( "signal" ) );
outlet_new( &object->object, gensym( "signal" ) );
// initialize variables
object->freq_array = NULL;
object->mag_array = NULL;
object->freq_remain_array = NULL;
object->mag_remain_array = NULL;
object->zero_index_array = NULL;
object->overlap = 1;
object->remainder_flag = FALSE;
// temporary string for argument evaluation
const char* symbol_string;
// parse initialization arguments
//--------------------------------------------------------------------------
if( items > 0 )
{
if( list[ 0 ].a_type == A_FLOAT )
{
freqsieve_overlap( object, atom_getfloatarg( 0, ( int )items, list ) );
}
else if( list[ 0 ].a_type == A_SYMBOL )
{
symbol_string = list[ 0 ].a_w.w_symbol->s_name;
if( StringMatch( symbol_string, "unused" ) )
{
object->remainder_flag = TRUE;
outlet_new( &object->object, gensym( "signal" ) );
outlet_new( &object->object, gensym( "signal" ) );
}
else
{
pd_error( object, "freqsieve~: unknown argument" );
}
}
}
if( ( items > 1 ) && ( list[ 0 ].a_type == A_SYMBOL ) )
{
if( list[ 1 ].a_type == A_FLOAT )
{
freqsieve_overlap( object, atom_getfloatarg( 0, ( int )items, list ) );
}
else
{
pd_error( object, "freqsieve~: argument 2: invalid type" );
}
}
if( ( ( items > 1 ) && ( list[ 0 ].a_type != A_SYMBOL ) ) || ( items > 2 ) )
{
pd_error( object, "freqsieve~: extra arguments ignored" );
}
return object;
}
//------------------------------------------------------------------------------
// freqsieve_free - garbage collection
//------------------------------------------------------------------------------
static void freqsieve_free( t_freqsieve* object )
{
// if memory is allocated
if( object->freq_array )
{
// deallocate the memory
free( object->freq_array );
// set the memory pointer to null
object->freq_array = NULL;
}
// . . .
if( object->mag_array )
{
free( object->mag_array );
object->mag_array = NULL;
}
if( object->freq_remain_array )
{
free( object->freq_remain_array );
object->freq_remain_array = NULL;
}
if( object->mag_remain_array )
{
free( object->mag_remain_array );
object->mag_remain_array = NULL;
}
if( object->zero_index_array )
{
free( object->zero_index_array );
object->zero_index_array = NULL;
}
}
//------------------------------------------------------------------------------
// freqsieve_tilde_setup - describes the attributes of this object to pd so it may be properly instantiated
// (must always be named with _tilde replacing ~ in the object name)
//------------------------------------------------------------------------------
void freqsieve_tilde_setup( void )
{
// creates an instance of this object and describes it to pd
freqsieve_class = class_new( gensym( "freqsieve~" ), ( t_newmethod )freqsieve_new, ( t_method )freqsieve_free, sizeof( t_freqsieve ), 0, A_GIMME, 0 );
// declares leftmost inlet as a signal inlet
CLASS_MAINSIGNALIN( freqsieve_class, t_freqsieve, inlet_1 );
// installs freqsieve_dsp so that it will be called when dsp is turned on
class_addmethod( freqsieve_class, ( t_method )freqsieve_dsp, gensym( "dsp" ), 0 );
// associate a method with the "overlap" symbol for subsequent overlap inlet handling
class_addmethod( freqsieve_class, ( t_method )freqsieve_overlap, gensym( "overlap" ), A_FLOAT, 0 );
}
//------------------------------------------------------------------------------
// EOF
//------------------------------------------------------------------------------
// Pd Spectral Toolkit
//
// freqsieve~.c
//
// Assigns spectral data with greatest magnitude to the correct bin based on
// frequency in right inlet, optionally outputs unassigned data
//
// Created by Cooper on 8/5/12.
// Updated for 64 Bit Support in September 2019.
// Copyright (C) 2019 Cooper Baker. All Rights Reserved.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// headers
//------------------------------------------------------------------------------
// main header for pd
#include "m_pd.h"
// utility header for Pd Spectral Toolkit project
#include "utility.h"
// c standard library used for realloc and free
#include <stdlib.h>
// c standard library used for memset and memcpy
#include <string.h>
// disable compiler warnings on windows
#ifdef NT
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#endif
//------------------------------------------------------------------------------
// freqsieve_class - pointer to this object's definition
//------------------------------------------------------------------------------
static t_class* freqsieve_class;
//------------------------------------------------------------------------------
// freqsieve - data structure holding this object's data
//------------------------------------------------------------------------------
typedef struct freqsieve
{
// this object - must always be first variable in struct
t_object object;
// needed for CLASS_MAINSIGNALIN macro call in freqsieve_tilde_setup
t_float inlet_1;
// needed for signalinlet_new call in freqsieve_new
t_float inlet_2;
// pointer to temporary array for frequency assignment
t_float* freq_array;
// pointer to temporary array for magnitude assignment
t_float* mag_array;
// pointer to array for unassigned frequency data
t_float* freq_remain_array;
// pointer to array for unassigned magnitude data
t_float* mag_remain_array;
// pointer to array containing indices of data that needs to be zeroed in remainder arrays
t_float* zero_index_array;
// memory size of data vectors
t_float memory_size;
// sample rate of the patch we're in
t_float sample_rate;
// overlap of the patch we're in
t_float overlap;
// flag for remainder mode of this object
t_int remainder_flag;
} t_freqsieve;
//------------------------------------------------------------------------------
// function prototypes
//------------------------------------------------------------------------------
static t_int* freqsieve_perform ( t_int* io );
static t_int* freqsieve_perform_remainder( t_int* io );
static void freqsieve_dsp ( t_freqsieve* object, t_signal **sig );
static void freqsieve_overlap ( t_freqsieve* object, t_floatarg overlap );
static void* freqsieve_new ( t_symbol* symbol, t_int items, t_atom* list );
static void freqsieve_free ( t_freqsieve* object );
void freqsieve_tilde_setup ( void );
//------------------------------------------------------------------------------
// freqsieve_perform - the signal processing function of this object
//------------------------------------------------------------------------------
static t_int* freqsieve_perform( t_int* io )
{
// store variables from dsp input/output array
t_float* in1 = ( t_float* )( io[ 1 ] );
t_float* in2 = ( t_float* )( io[ 2 ] );
t_float* out1 = ( t_float* )( io[ 3 ] );
t_float* out2 = ( t_float* )( io[ 4 ] );
t_int frames = ( t_int )( io[ 5 ] );
t_freqsieve* object = ( t_freqsieve* )( io[ 6 ] );
// store values from object's data structure
t_float* freq_array = object->freq_array;
t_float* mag_array = object->mag_array;
t_float memory_size = object->memory_size;
t_float sample_rate = object->sample_rate;
t_float overlap = object->overlap;
// note
//--------------------------------------------------------------------------
// in re-blocked pd patches, sample rate is reported as parent
// sample rate multiplied by overlap factor
sample_rate = sample_rate / overlap;
// calculate the nyquist frequency
t_float nyquist = sample_rate * 0.5;
// signal vector iterator variable
t_int n = -1;
// assignment variables
t_float freq;
t_float mag;
// calculate number of hertz per bin ( frequency width )
t_float hz_per_bin = sample_rate / frames;
// temporary bin index variable
t_int bin_index;
// clear the temporary magnitude and frequency arrays
memset( freq_array, 0, memory_size );
memset( mag_array, 0, memory_size );
// the dsp loop
while( ++n < frames )
{
// store input samples
mag = in1[ n ];
freq = in2[ n ];
// discard frequencies above nyquist
if( freq > nyquist )
{
freq = 0;
}
// assign frequencies to bins
if( freq )
{
// calculate bin location of frequency
bin_index = ( freq / hz_per_bin );
// prevent negative results
bin_index = ClipMin( bin_index, 0 );
// assign frequency with higest magnitude to bin
if( mag >= mag_array[ bin_index ] )
{
freq_array[ bin_index ] = freq;
mag_array [ bin_index ] = mag;
}
}
}
// clear the output arrays
memset( out1, 0, memory_size );
memset( out2, 0, memory_size );
// copy temporary arrays to output arrays
memcpy( out1, mag_array, memory_size );
memcpy( out2, freq_array, memory_size );
// return the dsp input/output array address plus one more than its size
// to provide a pointer to the next perform function in pd's call list
return &( io[ 7 ] );
}
//------------------------------------------------------------------------------
// freqsieve_perform_remainder - the signal processing function of this object with remainder
//------------------------------------------------------------------------------
static t_int* freqsieve_perform_remainder( t_int* io )
{
// store variables from dsp input/output array
t_float* in1 = ( t_float* )( io[ 1 ] );
t_float* in2 = ( t_float* )( io[ 2 ] );
t_float* out1 = ( t_float* )( io[ 3 ] );
t_float* out2 = ( t_float* )( io[ 4 ] );
t_float* out3 = ( t_float* )( io[ 5 ] );
t_float* out4 = ( t_float* )( io[ 6 ] );
t_int frames = ( t_int )( io[ 7 ] );
t_freqsieve* object = ( t_freqsieve* )( io[ 8 ] );
// store values from object's data structure
t_float* freq_array = object->freq_array;
t_float* mag_array = object->mag_array;
t_float* freq_remain_array = object->freq_remain_array;
t_float* mag_remain_array = object->mag_remain_array;
t_float* zero_index_array = object->zero_index_array;
t_float memory_size = object->memory_size;
t_float sample_rate = object->sample_rate;
t_float overlap = object->overlap;
// note
//--------------------------------------------------------------------------
// in re-blocked pd patches, sample rate is reported as parent
// sample rate multiplied by overlap factor
sample_rate = sample_rate / overlap;
// calculate the nyquist frequency
t_float nyquist = sample_rate * 0.5;
// signal vector iterator variable
t_int n = -1;
// assignment variables
t_float freq;
t_float mag;
// calculate number of hertz per bin ( frequency width )
t_float hz_per_bin = sample_rate / frames;
// temporary bin index variable
t_int bin_index;
// clear the temporary magnitude and frequency arrays
memset( freq_array, 0, memory_size );
memset( mag_array, 0, memory_size );
memset( freq_remain_array, 0, memory_size );
memset( mag_remain_array, 0, memory_size );
memset( zero_index_array, 0, memory_size );
memcpy( mag_remain_array, in1, memory_size );
memcpy( freq_remain_array, in2, memory_size );
// the dsp loop
while( ++n < frames )
{
// store input samples
mag = in1[ n ];
freq = in2[ n ];
// discard frequencies above nyquist
if( freq > nyquist )
{
freq = 0;
}
// assign frequencies to bins
if( freq )
{
// calculate bin location of frequency
bin_index = ( freq / hz_per_bin );
// prevent negative results
bin_index = ClipMin( bin_index, 0 );
// assign frequency with higest magnitude to bin
if( mag >= mag_array[ bin_index ] )
{
freq_array[ bin_index ] = freq;
mag_array [ bin_index ] = mag;
// keep track of where assigned values came from
zero_index_array[ bin_index ] = n;
}
}
}
// reset signal vector iterator variable
n = -1;
// zero out the bin data that has been reassigned to new bins
while( ++n < frames )
{
freq_remain_array[ ( t_int )zero_index_array[ n ] ] = 0;
mag_remain_array [ ( t_int )zero_index_array[ n ] ] = 0;
}
// clear the output arrays
memset( out1, 0, memory_size );
memset( out2, 0, memory_size );
memset( out3, 0, memory_size );
memset( out4, 0, memory_size );
// copy temporary arrays to output arrays
memcpy( out1, mag_array, memory_size );
memcpy( out2, freq_array, memory_size );
memcpy( out3, mag_remain_array, memory_size );
memcpy( out4, freq_remain_array, memory_size );
// return the dsp input/output array address plus one more than its size
// to provide a pointer to the next perform function in pd's call list
return &( io[ 9 ] );
}
//------------------------------------------------------------------------------
// freqsieve_dsp - installs this object's dsp function in pd's callback list
//------------------------------------------------------------------------------
static void freqsieve_dsp( t_freqsieve* object, t_signal **sig )
{
// calculate memory size for realloc and memset
t_int memory_size = sig[ 0 ]->s_n * sizeof( t_float );
// store values for use in dsp loop
object->memory_size = memory_size;
object->sample_rate = sig[ 0 ]->s_sr;
if( object->remainder_flag )
{
// allocate enough memory to hold vectors of data
object->freq_array = realloc( object->freq_array, memory_size );
object->mag_array = realloc( object->mag_array, memory_size );
object->freq_remain_array = realloc( object->freq_remain_array, memory_size );
object->mag_remain_array = realloc( object->mag_remain_array, memory_size );
object->zero_index_array = realloc( object->zero_index_array, memory_size );
// dsp_add arguments
//----------------------------------------------------------------------
// perform routine
// number of passed parameters
// inlet 1 sample vector
// inlet 2 sample vector
// outlet 1 sample vector
// outlet 2 sample vector
// outlet 3 sample vector
// outlet 4 sample vector
// sample frames to process (vector size)
// pointer to this object
dsp_add( freqsieve_perform_remainder, 8, sig[ 0 ]->s_vec, sig[ 1 ]->s_vec, sig[ 2 ]->s_vec, sig[ 3 ]->s_vec, sig[ 4 ]->s_vec, sig[ 5 ]->s_vec, sig[ 0 ]->s_n, object );
}
else
{
// allocate enough memory to hold vectors of data
object->freq_array = realloc( object->freq_array, memory_size );
object->mag_array = realloc( object->mag_array, memory_size );
// dsp_add arguments
//----------------------------------------------------------------------
// perform routine
// number of passed parameters
// inlet 1 sample vector
// inlet 2 sample vector
// outlet 1 sample vector
// outlet 2 sample vector
// sample frames to process (vector size)
// pointer to this object
dsp_add( freqsieve_perform, 6, sig[ 0 ]->s_vec, sig[ 1 ]->s_vec, sig[ 2 ]->s_vec, sig[ 3 ]->s_vec, sig[ 0 ]->s_n, object );
}
}
//------------------------------------------------------------------------------
// freqsieve_overlap - sets the overlap factor for use in dsp calculations
//------------------------------------------------------------------------------
static void freqsieve_overlap( t_freqsieve* object, t_floatarg overlap )
{
if( overlap < 1 )
{
overlap = 1;
}
object->overlap = overlap;
}
//------------------------------------------------------------------------------
// freqsieve_new - instantiates a copy of this object in pd
//------------------------------------------------------------------------------
static void* freqsieve_new( t_symbol* symbol, t_int items, t_atom* list )
{
// create a pointer to this object
t_freqsieve* object = ( t_freqsieve* )pd_new( freqsieve_class );
// create a second signal inlet
signalinlet_new( &object->object, object->inlet_2 );
// create a float inlet to receive overlap factor value
inlet_new( &object->object, &object->object.ob_pd, gensym( "float" ), gensym( "overlap" ) );
// create two signal outlets for this object
outlet_new( &object->object, gensym( "signal" ) );
outlet_new( &object->object, gensym( "signal" ) );
// initialize variables
object->freq_array = NULL;
object->mag_array = NULL;
object->freq_remain_array = NULL;
object->mag_remain_array = NULL;
object->zero_index_array = NULL;
object->overlap = 1;
object->remainder_flag = FALSE;
// temporary string for argument evaluation
const char* symbol_string;
// parse initialization arguments
//--------------------------------------------------------------------------
if( items > 0 )
{
if( list[ 0 ].a_type == A_FLOAT )
{
freqsieve_overlap( object, atom_getfloatarg( 0, ( int )items, list ) );
}
else if( list[ 0 ].a_type == A_SYMBOL )
{
symbol_string = list[ 0 ].a_w.w_symbol->s_name;
if( StringMatch( symbol_string, "unused" ) )
{
object->remainder_flag = TRUE;
outlet_new( &object->object, gensym( "signal" ) );
outlet_new( &object->object, gensym( "signal" ) );
}
else
{
pd_error( object, "freqsieve~: unknown argument" );
}
}
}
if( ( items > 1 ) && ( list[ 0 ].a_type == A_SYMBOL ) )
{
if( list[ 1 ].a_type == A_FLOAT )
{
freqsieve_overlap( object, atom_getfloatarg( 0, ( int )items, list ) );
}
else
{
pd_error( object, "freqsieve~: argument 2: invalid type" );
}
}
if( ( ( items > 1 ) && ( list[ 0 ].a_type != A_SYMBOL ) ) || ( items > 2 ) )
{
pd_error( object, "freqsieve~: extra arguments ignored" );
}
return object;
}
//------------------------------------------------------------------------------
// freqsieve_free - garbage collection
//------------------------------------------------------------------------------
static void freqsieve_free( t_freqsieve* object )
{
// if memory is allocated
if( object->freq_array )
{
// deallocate the memory
free( object->freq_array );
// set the memory pointer to null
object->freq_array = NULL;
}
// . . .
if( object->mag_array )
{
free( object->mag_array );
object->mag_array = NULL;
}
if( object->freq_remain_array )
{
free( object->freq_remain_array );
object->freq_remain_array = NULL;
}
if( object->mag_remain_array )
{
free( object->mag_remain_array );
object->mag_remain_array = NULL;
}
if( object->zero_index_array )
{
free( object->zero_index_array );
object->zero_index_array = NULL;
}
}
//------------------------------------------------------------------------------
// freqsieve_tilde_setup - describes the attributes of this object to pd so it may be properly instantiated
// (must always be named with _tilde replacing ~ in the object name)
//------------------------------------------------------------------------------
void freqsieve_tilde_setup( void )
{
// creates an instance of this object and describes it to pd
freqsieve_class = class_new( gensym( "freqsieve~" ), ( t_newmethod )freqsieve_new, ( t_method )freqsieve_free, sizeof( t_freqsieve ), 0, A_GIMME, 0 );
// declares leftmost inlet as a signal inlet
CLASS_MAINSIGNALIN( freqsieve_class, t_freqsieve, inlet_1 );
// installs freqsieve_dsp so that it will be called when dsp is turned on
class_addmethod( freqsieve_class, ( t_method )freqsieve_dsp, gensym( "dsp" ), 0 );
// associate a method with the "overlap" symbol for subsequent overlap inlet handling
class_addmethod( freqsieve_class, ( t_method )freqsieve_overlap, gensym( "overlap" ), A_FLOAT, 0 );
}
//------------------------------------------------------------------------------
// EOF
//------------------------------------------------------------------------------