//------------------------------------------------------------------------------
// Pd Spectral Toolkit
//
// cartofreq~.c
//
// Converts cartesian coordinates to magnitude and frequency
//
// Created by Cooper Baker on 7/7/12.
// Updated for 64 Bit Support in September 2019.
// Copyright (C) 2019 Cooper Baker. All Rights Reserved.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// headers
//------------------------------------------------------------------------------
// main header for pd
#include "m_pd.h"
// utility header for Pd Spectral Toolkit project
#include "utility.h"
// c standard library used for realloc and free
#include <stdlib.h>
// c standard library used for memset and memcpy
#include <string.h>
// disable compiler warnings on windows
#ifdef NT
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#endif
//------------------------------------------------------------------------------
// cartofreq_class - pointer to this object's definition
//------------------------------------------------------------------------------
static t_class* cartofreq_class;
//------------------------------------------------------------------------------
// cartofreq - data structure holding this object's data
//------------------------------------------------------------------------------
typedef struct cartofreq
{
// this object - must always be first variable in struct
t_object object;
// needed for CLASS_MAINSIGNALIN macro call in cartofreq_tilde_setup
t_float inlet_1;
// needed for signalinlet_new call in cartofreq_new
t_float inlet_2;
// variable for overlap factor
t_float overlap;
// pointer to phase array
t_float* phase_array;
// pointer to magnitude array
t_float* mag_array;
// pointer to temporary phase deviation (delta) data array
t_float* delta_array_temp;
// pointer to array of previous phase deviation (delta) info
t_float* delta_array_old;
// memory size for memcpy
t_float memory_size;
// the local sample rate
t_float sample_rate;
} t_cartofreq;
//------------------------------------------------------------------------------
// function prototypes
//------------------------------------------------------------------------------
static t_int* cartofreq_perform ( t_int* io );
static void cartofreq_dsp ( t_cartofreq* object, t_signal **sig );
static void cartofreq_overlap ( t_cartofreq* object, t_floatarg overlap );
static void* cartofreq_new ( t_symbol* symbol, t_int items, t_atom* list );
static void cartofreq_free ( t_cartofreq* object );
void cartofreq_tilde_setup ( void );
//------------------------------------------------------------------------------
// cartofreq_perform - the signal processing function of this object
//------------------------------------------------------------------------------
static t_int* cartofreq_perform( t_int* io )
{
// store variables from dsp input/output array
t_float* in1 = ( t_float* )( io[ 1 ] );
t_float* in2 = ( t_float* )( io[ 2 ] );
t_float* out1 = ( t_float* )( io[ 3 ] );
t_float* out2 = ( t_float* )( io[ 4 ] );
t_float frames = ( t_int )( io[ 5 ] );
t_cartofreq* object = ( t_cartofreq* )( io[ 6 ] );
// store values from object's data struct
t_float* phase_array = object->phase_array;
t_float* mag_array = object->mag_array;
t_float* delta_temp = object->delta_array_temp;
t_float* delta_old = object->delta_array_old;
t_int memory_size = object->memory_size;
t_float sample_rate = object->sample_rate;
t_float overlap = object->overlap;
// note
//--------------------------------------------------------------------------
// in re-blocked pd patches, sample rate is reported as parent
// sample rate multiplied by overlap factor
sample_rate = sample_rate / overlap;
// allocate calculation variables
t_float real;
t_float imaginary;
t_float phase_delta;
t_float bin_width = sample_rate / frames;
t_float bin_center;
t_float freq_offset;
t_float frequency;
// signal vector iterator variable
t_int n = -1;
// cartesian to polar calculation loop
while( ++n < frames )
{
// store input values
real = in1[ n ];
imaginary = in2[ n ];
// calculate magnitude
mag_array [ n ] = SquareRoot( real * real + imaginary * imaginary );
// calculate phase
phase_array[ n ] = ArcTangent2( imaginary, real );
}
// copy phase array to delta temp array
memcpy( delta_temp, phase_array, memory_size );
// reset signal vector iterator variable
n = -1;
// polar to frequency calculation loop
while( ++n < frames )
{
// phase to frequency
//----------------------------------------------------------------------
// calculate phase deviation
phase_delta = phase_array[ n ] - delta_old[ n ];
// wrap phase between -pi and pi
phase_delta = WrapPosNegPi( phase_delta );
// calculate center frequency of each bin
bin_center = n * bin_width;
// calculate frequency offset from center of each bin
freq_offset = phase_delta * C_1_OVER_2_PI * bin_width * overlap;
// calculate frequency present in each bin
frequency = bin_center + freq_offset;
// store output values
//----------------------------------------------------------------------
out2[ n ] = frequency;
}
t_float debug_freq = out2[ 1 ];
debug_freq = debug_freq;
// copy magnitude array to output 1 array
memcpy( out1, mag_array, memory_size );
// copy delta_temp array into delta_old array for next dsp vector calculation
memcpy( delta_old, delta_temp, memory_size );
// return the dsp input/output array address plus one more than its size
// to provide a pointer to the next perform function in pd's call list
return &( io[ 7 ] );
}
//static t_int* cartofreq_perform( t_int* io )
//{
// // store variables from dsp input/output array
// t_float* in1 = ( t_float* )( io[ 1 ] );
// t_float* in2 = ( t_float* )( io[ 2 ] );
// t_float* out1 = ( t_float* )( io[ 3 ] );
// t_float* out2 = ( t_float* )( io[ 4 ] );
// t_float frames = ( t_int )( io[ 5 ] );
// t_cartofreq* object = ( t_cartofreq* )( io[ 6 ] );
//
// // store values from object's data struct
// t_float* phase_array = object->phase_array;
// t_float* mag_array = object->mag_array;
// t_float* delta_temp = object->delta_array_temp;
// t_float* delta_old = object->delta_array_old;
// t_int memory_size = object->memory_size;
// t_float sample_rate = object->sample_rate;
// t_float overlap = object->overlap;
//
// // note
// //--------------------------------------------------------------------------
// // in re-blocked pd patches, sample rate is reported as parent
// // sample rate multiplied by overlap factor
// sample_rate = sample_rate / overlap;
//
// // allocate calculation variables
// t_float real;
// t_float imaginary;
// t_float phase;
// t_float bin_freq;
// t_float freq_offset;
// t_float frequency;
//
// // signal vector iterator variable
// t_int n = -1;
//
// // cartesian to polar calculation loop
// while( ++n < frames )
// {
// // store input values
// real = in1[ n ];
// imaginary = in2[ n ];
//
// // calculate magnitude
// mag_array [ n ] = SquareRoot( real * real + imaginary * imaginary );
//
// // calculate phase
// phase_array[ n ] = ArcTangent2( imaginary, real );
// }
//
// // copy phase array to delta temp array
// memcpy( delta_temp, phase_array, memory_size );
//
// // reset signal vector iterator variable
// n = -1;
//
// // polar to frequency calculation loop
// while( ++n < frames )
// {
// // phase to frequency
// //----------------------------------------------------------------------
//
// // calculate phase deviation
// phase = phase_array[ n ] - delta_old[ n ];
//
// // wrap phase between -pi and pi
// phase = WrapPosNegPi( phase );
//
// // calculate center frequency of each bin
// bin_freq = ( ( t_float )n / frames ) * sample_rate;
//
// // calculate frequency offset of contents of each bin
// freq_offset = phase * ( ( ( sample_rate * overlap ) / frames ) / C_2_PI );
//
// // calculate frequency present in each bin
// frequency = bin_freq + freq_offset;
//
//
// // store output values
// //----------------------------------------------------------------------
// out2[ n ] = frequency;
// }
//
// // copy magnitude array to output 1 array
// memcpy( out1, mag_array, memory_size );
//
// // copy delta_temp array into delta_old array for next dsp vector calculation
// memcpy( delta_old, delta_temp, memory_size );
//
// // return the dsp input/output array address plus one more than its size
// // to provide a pointer to the next perform function in pd's call list
// return &( io[ 7 ] );
//}
//------------------------------------------------------------------------------
// cartofreq_dsp - installs this object's dsp function in pd's callback list
//------------------------------------------------------------------------------
static void cartofreq_dsp( t_cartofreq* object, t_signal **sig )
{
// calculate memory size for realloc and memset
t_int memory_size = sig[ 0 ]->s_n * sizeof( t_float );
// allocate enough memory to hold signal vector data
object->phase_array = realloc( object->phase_array, memory_size );
object->mag_array = realloc( object->mag_array, memory_size );
object->delta_array_temp = realloc( object->delta_array_temp, memory_size );
object->delta_array_old = realloc( object->delta_array_old, memory_size );
// set allocated memory values to 0
memset( object->delta_array_temp, 0, memory_size );
memset( object->delta_array_old, 0, memory_size );
object->memory_size = memory_size;
object->sample_rate = sig[ 0 ]->s_sr;
// dsp_add arguments
//--------------------------------------------------------------------------
// perform routine
// number of passed parameters
// inlet 1 sample vector
// inlet 2 sample vector
// outlet 1 sample vector
// outlet 2 sample vector
// sample frames to process (vector size)
// pointer to this object
dsp_add
(
cartofreq_perform,
6,
sig[ 0 ]->s_vec,
sig[ 1 ]->s_vec,
sig[ 2 ]->s_vec,
sig[ 3 ]->s_vec,
sig[ 0 ]->s_n,
object
);
}
//------------------------------------------------------------------------------
// cartofreq_overlap - sets the overlap factor for use in dsp calculations
//------------------------------------------------------------------------------
static void cartofreq_overlap( t_cartofreq* object, t_floatarg overlap )
{
object->overlap = ClipMin( overlap, 1 );
}
//------------------------------------------------------------------------------
// cartofreq_new - instantiates a copy of this object in pd
//------------------------------------------------------------------------------
static void* cartofreq_new( t_symbol* symbol, t_int items, t_atom* list )
{
// create a pointer to this object
t_cartofreq* object = ( t_cartofreq* )pd_new( cartofreq_class );
// create a second signal inlet
signalinlet_new( &object->object, object->inlet_2 );
// create a float inlet to receive overlap factor value
inlet_new( &object->object, &object->object.ob_pd, gensym( "float" ), gensym( "overlap" ) );
// create two signal outlets for this object
outlet_new( &object->object, gensym( "signal" ) );
outlet_new( &object->object, gensym( "signal" ) );
// initialize variables
object->delta_array_temp = NULL;
object->delta_array_old = NULL;
object->phase_array = NULL;
object->mag_array = NULL;
// handle overlap argument
if( items )
{
cartofreq_overlap( object, atom_getfloatarg( 0, ( int )items, list ) );
}
else
{
object->overlap = 1;
}
return object;
}
//------------------------------------------------------------------------------
// cartofreq_free - garbage collection
//------------------------------------------------------------------------------
static void cartofreq_free( t_cartofreq* object )
{
// if memory is allocated
if( object->phase_array )
{
// deallocate the memory
free( object->phase_array );
// set the memory pointer to null
object->phase_array = NULL;
}
// . . .
if( object->mag_array )
{
free( object->mag_array );
object->mag_array = NULL;
}
if( object->delta_array_temp )
{
free( object->delta_array_temp );
object->delta_array_temp = NULL;
}
if( object->delta_array_old )
{
free( object->delta_array_old );
object->delta_array_old = NULL;
}
}
//------------------------------------------------------------------------------
// cartofreq_tilde_setup - describes the attributes of this object to pd so it may be properly instantiated
// (must always be named with _tilde replacing ~ in the object name)
//------------------------------------------------------------------------------
void cartofreq_tilde_setup( void )
{
// creates an instance of this object and describes it to pd
cartofreq_class = class_new( gensym( "cartofreq~" ), ( t_newmethod )cartofreq_new, ( t_method )cartofreq_free, sizeof( t_cartofreq ), 0, A_GIMME, 0 );
// declares leftmost inlet as a signal inlet
CLASS_MAINSIGNALIN( cartofreq_class, t_cartofreq, inlet_1 );
// installs cartofreq_dsp so that it will be called when dsp is turned on
class_addmethod( cartofreq_class, ( t_method )cartofreq_dsp, gensym( "dsp" ), 0 );
// associate a method with the "overlap" symbol for subsequent overlap inlet handling
class_addmethod( cartofreq_class, ( t_method )cartofreq_overlap, gensym( "overlap" ), A_FLOAT, 0 );
}
//------------------------------------------------------------------------------
// EOF
//------------------------------------------------------------------------------
// Pd Spectral Toolkit
//
// cartofreq~.c
//
// Converts cartesian coordinates to magnitude and frequency
//
// Created by Cooper Baker on 7/7/12.
// Updated for 64 Bit Support in September 2019.
// Copyright (C) 2019 Cooper Baker. All Rights Reserved.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// headers
//------------------------------------------------------------------------------
// main header for pd
#include "m_pd.h"
// utility header for Pd Spectral Toolkit project
#include "utility.h"
// c standard library used for realloc and free
#include <stdlib.h>
// c standard library used for memset and memcpy
#include <string.h>
// disable compiler warnings on windows
#ifdef NT
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#endif
//------------------------------------------------------------------------------
// cartofreq_class - pointer to this object's definition
//------------------------------------------------------------------------------
static t_class* cartofreq_class;
//------------------------------------------------------------------------------
// cartofreq - data structure holding this object's data
//------------------------------------------------------------------------------
typedef struct cartofreq
{
// this object - must always be first variable in struct
t_object object;
// needed for CLASS_MAINSIGNALIN macro call in cartofreq_tilde_setup
t_float inlet_1;
// needed for signalinlet_new call in cartofreq_new
t_float inlet_2;
// variable for overlap factor
t_float overlap;
// pointer to phase array
t_float* phase_array;
// pointer to magnitude array
t_float* mag_array;
// pointer to temporary phase deviation (delta) data array
t_float* delta_array_temp;
// pointer to array of previous phase deviation (delta) info
t_float* delta_array_old;
// memory size for memcpy
t_float memory_size;
// the local sample rate
t_float sample_rate;
} t_cartofreq;
//------------------------------------------------------------------------------
// function prototypes
//------------------------------------------------------------------------------
static t_int* cartofreq_perform ( t_int* io );
static void cartofreq_dsp ( t_cartofreq* object, t_signal **sig );
static void cartofreq_overlap ( t_cartofreq* object, t_floatarg overlap );
static void* cartofreq_new ( t_symbol* symbol, t_int items, t_atom* list );
static void cartofreq_free ( t_cartofreq* object );
void cartofreq_tilde_setup ( void );
//------------------------------------------------------------------------------
// cartofreq_perform - the signal processing function of this object
//------------------------------------------------------------------------------
static t_int* cartofreq_perform( t_int* io )
{
// store variables from dsp input/output array
t_float* in1 = ( t_float* )( io[ 1 ] );
t_float* in2 = ( t_float* )( io[ 2 ] );
t_float* out1 = ( t_float* )( io[ 3 ] );
t_float* out2 = ( t_float* )( io[ 4 ] );
t_float frames = ( t_int )( io[ 5 ] );
t_cartofreq* object = ( t_cartofreq* )( io[ 6 ] );
// store values from object's data struct
t_float* phase_array = object->phase_array;
t_float* mag_array = object->mag_array;
t_float* delta_temp = object->delta_array_temp;
t_float* delta_old = object->delta_array_old;
t_int memory_size = object->memory_size;
t_float sample_rate = object->sample_rate;
t_float overlap = object->overlap;
// note
//--------------------------------------------------------------------------
// in re-blocked pd patches, sample rate is reported as parent
// sample rate multiplied by overlap factor
sample_rate = sample_rate / overlap;
// allocate calculation variables
t_float real;
t_float imaginary;
t_float phase_delta;
t_float bin_width = sample_rate / frames;
t_float bin_center;
t_float freq_offset;
t_float frequency;
// signal vector iterator variable
t_int n = -1;
// cartesian to polar calculation loop
while( ++n < frames )
{
// store input values
real = in1[ n ];
imaginary = in2[ n ];
// calculate magnitude
mag_array [ n ] = SquareRoot( real * real + imaginary * imaginary );
// calculate phase
phase_array[ n ] = ArcTangent2( imaginary, real );
}
// copy phase array to delta temp array
memcpy( delta_temp, phase_array, memory_size );
// reset signal vector iterator variable
n = -1;
// polar to frequency calculation loop
while( ++n < frames )
{
// phase to frequency
//----------------------------------------------------------------------
// calculate phase deviation
phase_delta = phase_array[ n ] - delta_old[ n ];
// wrap phase between -pi and pi
phase_delta = WrapPosNegPi( phase_delta );
// calculate center frequency of each bin
bin_center = n * bin_width;
// calculate frequency offset from center of each bin
freq_offset = phase_delta * C_1_OVER_2_PI * bin_width * overlap;
// calculate frequency present in each bin
frequency = bin_center + freq_offset;
// store output values
//----------------------------------------------------------------------
out2[ n ] = frequency;
}
t_float debug_freq = out2[ 1 ];
debug_freq = debug_freq;
// copy magnitude array to output 1 array
memcpy( out1, mag_array, memory_size );
// copy delta_temp array into delta_old array for next dsp vector calculation
memcpy( delta_old, delta_temp, memory_size );
// return the dsp input/output array address plus one more than its size
// to provide a pointer to the next perform function in pd's call list
return &( io[ 7 ] );
}
//static t_int* cartofreq_perform( t_int* io )
//{
// // store variables from dsp input/output array
// t_float* in1 = ( t_float* )( io[ 1 ] );
// t_float* in2 = ( t_float* )( io[ 2 ] );
// t_float* out1 = ( t_float* )( io[ 3 ] );
// t_float* out2 = ( t_float* )( io[ 4 ] );
// t_float frames = ( t_int )( io[ 5 ] );
// t_cartofreq* object = ( t_cartofreq* )( io[ 6 ] );
//
// // store values from object's data struct
// t_float* phase_array = object->phase_array;
// t_float* mag_array = object->mag_array;
// t_float* delta_temp = object->delta_array_temp;
// t_float* delta_old = object->delta_array_old;
// t_int memory_size = object->memory_size;
// t_float sample_rate = object->sample_rate;
// t_float overlap = object->overlap;
//
// // note
// //--------------------------------------------------------------------------
// // in re-blocked pd patches, sample rate is reported as parent
// // sample rate multiplied by overlap factor
// sample_rate = sample_rate / overlap;
//
// // allocate calculation variables
// t_float real;
// t_float imaginary;
// t_float phase;
// t_float bin_freq;
// t_float freq_offset;
// t_float frequency;
//
// // signal vector iterator variable
// t_int n = -1;
//
// // cartesian to polar calculation loop
// while( ++n < frames )
// {
// // store input values
// real = in1[ n ];
// imaginary = in2[ n ];
//
// // calculate magnitude
// mag_array [ n ] = SquareRoot( real * real + imaginary * imaginary );
//
// // calculate phase
// phase_array[ n ] = ArcTangent2( imaginary, real );
// }
//
// // copy phase array to delta temp array
// memcpy( delta_temp, phase_array, memory_size );
//
// // reset signal vector iterator variable
// n = -1;
//
// // polar to frequency calculation loop
// while( ++n < frames )
// {
// // phase to frequency
// //----------------------------------------------------------------------
//
// // calculate phase deviation
// phase = phase_array[ n ] - delta_old[ n ];
//
// // wrap phase between -pi and pi
// phase = WrapPosNegPi( phase );
//
// // calculate center frequency of each bin
// bin_freq = ( ( t_float )n / frames ) * sample_rate;
//
// // calculate frequency offset of contents of each bin
// freq_offset = phase * ( ( ( sample_rate * overlap ) / frames ) / C_2_PI );
//
// // calculate frequency present in each bin
// frequency = bin_freq + freq_offset;
//
//
// // store output values
// //----------------------------------------------------------------------
// out2[ n ] = frequency;
// }
//
// // copy magnitude array to output 1 array
// memcpy( out1, mag_array, memory_size );
//
// // copy delta_temp array into delta_old array for next dsp vector calculation
// memcpy( delta_old, delta_temp, memory_size );
//
// // return the dsp input/output array address plus one more than its size
// // to provide a pointer to the next perform function in pd's call list
// return &( io[ 7 ] );
//}
//------------------------------------------------------------------------------
// cartofreq_dsp - installs this object's dsp function in pd's callback list
//------------------------------------------------------------------------------
static void cartofreq_dsp( t_cartofreq* object, t_signal **sig )
{
// calculate memory size for realloc and memset
t_int memory_size = sig[ 0 ]->s_n * sizeof( t_float );
// allocate enough memory to hold signal vector data
object->phase_array = realloc( object->phase_array, memory_size );
object->mag_array = realloc( object->mag_array, memory_size );
object->delta_array_temp = realloc( object->delta_array_temp, memory_size );
object->delta_array_old = realloc( object->delta_array_old, memory_size );
// set allocated memory values to 0
memset( object->delta_array_temp, 0, memory_size );
memset( object->delta_array_old, 0, memory_size );
object->memory_size = memory_size;
object->sample_rate = sig[ 0 ]->s_sr;
// dsp_add arguments
//--------------------------------------------------------------------------
// perform routine
// number of passed parameters
// inlet 1 sample vector
// inlet 2 sample vector
// outlet 1 sample vector
// outlet 2 sample vector
// sample frames to process (vector size)
// pointer to this object
dsp_add
(
cartofreq_perform,
6,
sig[ 0 ]->s_vec,
sig[ 1 ]->s_vec,
sig[ 2 ]->s_vec,
sig[ 3 ]->s_vec,
sig[ 0 ]->s_n,
object
);
}
//------------------------------------------------------------------------------
// cartofreq_overlap - sets the overlap factor for use in dsp calculations
//------------------------------------------------------------------------------
static void cartofreq_overlap( t_cartofreq* object, t_floatarg overlap )
{
object->overlap = ClipMin( overlap, 1 );
}
//------------------------------------------------------------------------------
// cartofreq_new - instantiates a copy of this object in pd
//------------------------------------------------------------------------------
static void* cartofreq_new( t_symbol* symbol, t_int items, t_atom* list )
{
// create a pointer to this object
t_cartofreq* object = ( t_cartofreq* )pd_new( cartofreq_class );
// create a second signal inlet
signalinlet_new( &object->object, object->inlet_2 );
// create a float inlet to receive overlap factor value
inlet_new( &object->object, &object->object.ob_pd, gensym( "float" ), gensym( "overlap" ) );
// create two signal outlets for this object
outlet_new( &object->object, gensym( "signal" ) );
outlet_new( &object->object, gensym( "signal" ) );
// initialize variables
object->delta_array_temp = NULL;
object->delta_array_old = NULL;
object->phase_array = NULL;
object->mag_array = NULL;
// handle overlap argument
if( items )
{
cartofreq_overlap( object, atom_getfloatarg( 0, ( int )items, list ) );
}
else
{
object->overlap = 1;
}
return object;
}
//------------------------------------------------------------------------------
// cartofreq_free - garbage collection
//------------------------------------------------------------------------------
static void cartofreq_free( t_cartofreq* object )
{
// if memory is allocated
if( object->phase_array )
{
// deallocate the memory
free( object->phase_array );
// set the memory pointer to null
object->phase_array = NULL;
}
// . . .
if( object->mag_array )
{
free( object->mag_array );
object->mag_array = NULL;
}
if( object->delta_array_temp )
{
free( object->delta_array_temp );
object->delta_array_temp = NULL;
}
if( object->delta_array_old )
{
free( object->delta_array_old );
object->delta_array_old = NULL;
}
}
//------------------------------------------------------------------------------
// cartofreq_tilde_setup - describes the attributes of this object to pd so it may be properly instantiated
// (must always be named with _tilde replacing ~ in the object name)
//------------------------------------------------------------------------------
void cartofreq_tilde_setup( void )
{
// creates an instance of this object and describes it to pd
cartofreq_class = class_new( gensym( "cartofreq~" ), ( t_newmethod )cartofreq_new, ( t_method )cartofreq_free, sizeof( t_cartofreq ), 0, A_GIMME, 0 );
// declares leftmost inlet as a signal inlet
CLASS_MAINSIGNALIN( cartofreq_class, t_cartofreq, inlet_1 );
// installs cartofreq_dsp so that it will be called when dsp is turned on
class_addmethod( cartofreq_class, ( t_method )cartofreq_dsp, gensym( "dsp" ), 0 );
// associate a method with the "overlap" symbol for subsequent overlap inlet handling
class_addmethod( cartofreq_class, ( t_method )cartofreq_overlap, gensym( "overlap" ), A_FLOAT, 0 );
}
//------------------------------------------------------------------------------
// EOF
//------------------------------------------------------------------------------