//------------------------------------------------------------------------------
// Pd Spectral Toolkit
//
// bintrim~.c
//
// Passes bins within an arbitrary range and zeroes the rest
//
// Created by Cooper on 8/28/12.
// Updated for 64 Bit Support in September 2019.
// Copyright (C) 2019 Cooper Baker. All Rights Reserved.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// headers
//------------------------------------------------------------------------------
// main header for pd
#include "m_pd.h"
// utility header for Pd Spectral Toolkit project
#include "utility.h"
// disable compiler warnings on windows
#ifdef NT
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#endif
//------------------------------------------------------------------------------
// bintrim_class - pointer to this object's definition
//------------------------------------------------------------------------------
static t_class* bintrim_class;
static t_class* bintrim_arg_class;
//------------------------------------------------------------------------------
// bintrim - data structure holding this object's data
//------------------------------------------------------------------------------
typedef struct bintrim
{
// this object - must always be first variable in struct
t_object object;
// needed for CLASS_MAINSIGNALIN macro call in in_tilde_setup
t_float inlet_1;
// needed for signalinlet_new call in bintrim_new
t_float inlet_2;
// min / max bin numbers
t_float bin_min;
t_float bin_max;
// pointers to temporary signal vector arrays
t_float* in1_temp;
t_float* in2_temp;
// memory size of a signal vector block
t_int memory_size;
} t_bintrim;
//------------------------------------------------------------------------------
// function prototypes
//------------------------------------------------------------------------------
static t_int* bintrim_perform ( t_int* io );
static t_int* bintrim_arg_perform ( t_int* io );
static void bintrim_dsp ( t_bintrim* object, t_signal** sig );
static void bintrim_arg_dsp ( t_bintrim* object, t_signal** sig );
static void* bintrim_new ( t_symbol* selector, t_int items, t_atom* list );
static void bintrim_free ( t_bintrim* object );
void bintrim_tilde_setup ( void );
//------------------------------------------------------------------------------
// bintrim_perform - the signal processing function of this object
//------------------------------------------------------------------------------
static t_int* bintrim_perform( t_int* io )
{
// store variables from dsp input/output array
t_float* in1 = ( t_float* )( io[ 1 ] );
t_float* in2 = ( t_float* )( io[ 2 ] );
t_float* in3 = ( t_float* )( io[ 3 ] );
t_float* in4 = ( t_float* )( io[ 4 ] );
t_float* out1 = ( t_float* )( io[ 5 ] );
t_float* out2 = ( t_float* )( io[ 6 ] );
t_int frames = ( t_int )( io[ 7 ] );
t_bintrim* object = ( t_bintrim* )( io[ 8 ] );
// temp signal vectors
t_float* in1_temp = object->in1_temp;
t_float* in2_temp = object->in2_temp;
// memory copying variables
t_int mem_copy_size = object->memory_size;
t_int mem_clip_size;
t_int offset;
// store local copies of min/max bin numbers
t_int bin_min = in3[ 0 ];
t_int bin_max = in4[ 0 ];
// constrain and store object clip parameters
bin_min = Clip( bin_min, 0, frames - 1 );
bin_max = Clip( bin_max, 0, frames - 1 );
// calculate mem_size and offset for memcpy
if( bin_max < bin_min )
{
mem_clip_size = ( ( bin_min - bin_max ) + 1 ) * sizeof( t_float );
offset = bin_max;
}
else
{
mem_clip_size = ( ( bin_max - bin_min ) + 1 ) * sizeof( t_float );
offset = bin_min;
}
// copy inlet memory
memcpy( in1_temp, in1, mem_copy_size );
memcpy( in2_temp, in2, mem_copy_size );
// clear outlet memory
memset( out1, 0, mem_copy_size );
memset( out2, 0, mem_copy_size );
// copy values within clip range to outlets
memcpy( &( out1[ offset ] ), &( in1_temp[ offset ] ), mem_clip_size );
memcpy( &( out2[ offset ] ), &( in2_temp[ offset ] ), mem_clip_size );
// return the dsp input/output array address plus one more than its size
// to provide a pointer to the next perform function in pd's call list
return &( io[ 9 ] );
}
//------------------------------------------------------------------------------
// bintrim_arg_perform - the signal processing function of this object
//------------------------------------------------------------------------------
static t_int* bintrim_arg_perform( t_int* io )
{
// store variables from dsp input/output array
t_float* in1 = ( t_float* )( io[ 1 ] );
t_float* in2 = ( t_float* )( io[ 2 ] );
t_float* out1 = ( t_float* )( io[ 3 ] );
t_float* out2 = ( t_float* )( io[ 4 ] );
t_int frames = ( t_int )( io[ 5 ] );
t_bintrim* object = ( t_bintrim* )( io[ 6 ] );
// temp signal vectors
t_float* in1_temp = object->in1_temp;
t_float* in2_temp = object->in2_temp;
// memory copying variables
t_int mem_copy_size = object->memory_size;
t_int mem_clip_size;
t_int offset;
// store local copies of min/max bin numbers
t_int bin_min = object->bin_min;
t_int bin_max = object->bin_max;
// constrain and store object clip parameters
bin_min = Clip( bin_min, 0, frames - 1 );
bin_max = Clip( bin_max, 0, frames - 1 );
// calculate mem_size and offset for memcpy
if( bin_max < bin_min )
{
mem_clip_size = ( ( bin_min - bin_max ) + 1 ) * sizeof( t_float );
offset = bin_max;
}
else
{
mem_clip_size = ( ( bin_max - bin_min ) + 1 ) * sizeof( t_float );
offset = bin_min;
}
// copy inlet memory
memcpy( in1_temp, in1, mem_copy_size );
memcpy( in2_temp, in2, mem_copy_size );
// clear outlet memory
memset( out1, 0, mem_copy_size );
memset( out2, 0, mem_copy_size );
// copy values within clip range to outlets
memcpy( &( out1[ offset ] ), &( in1_temp[ offset ] ), mem_clip_size );
memcpy( &( out2[ offset ] ), &( in2_temp[ offset ] ), mem_clip_size );
// return the dsp input/output array address plus one more than its size
// to provide a pointer to the next perform function in pd's call list
return &( io[ 7 ] );
}
//------------------------------------------------------------------------------
// bintrim_dsp - installs this object's dsp function in pd's callback list
//------------------------------------------------------------------------------
static void bintrim_dsp( t_bintrim* object, t_signal** sig )
{
// calculate memory size of signal vector for memset and realloc
t_int memory_size = sig[ 0 ]->s_n * sizeof( t_float );
// save memory_size for use in dsp loop
object->memory_size = memory_size;
// allocate enough memory to hold signal vector data
object->in1_temp = realloc( object->in1_temp, memory_size );
object->in2_temp = realloc( object->in2_temp, memory_size );
// dsp_add arguments
//--------------------------------------------------------------------------
// perform routine
// number of passed parameters
// inlet 1 sample vector
// inlet 2 sample vector
// inlet 3 sample vector
// inlet 4 sample vector
// outlet 1 sample vector
// outlet 2 sample vector
// sample frames to process (vector size)
// pointer to this object
dsp_add( bintrim_perform, 8, sig[ 0 ]->s_vec, sig[ 1 ]->s_vec, sig[ 2 ]->s_vec, sig[ 3 ]->s_vec, sig[ 4 ]->s_vec, sig[ 5 ]->s_vec, sig[ 0 ]->s_n, object );
}
//------------------------------------------------------------------------------
// bintrim_arg_dsp - installs this object's dsp function in pd's callback list
//------------------------------------------------------------------------------
static void bintrim_arg_dsp( t_bintrim* object, t_signal** sig )
{
// calculate memory size of signal vector for memset and realloc
t_int memory_size = sig[ 0 ]->s_n * sizeof( t_float );
// save memory_size for use in dsp loop
object->memory_size = memory_size;
// allocate enough memory to hold signal vector data
object->in1_temp = realloc( object->in1_temp, memory_size );
object->in2_temp = realloc( object->in2_temp, memory_size );
// dsp_add arguments
//--------------------------------------------------------------------------
// perform routine
// number of passed parameters
// inlet 1 sample vector
// inlet 2 sample vector
// outlet 1 sample vector
// outlet 2 sample vector
// sample frames to process (vector size)
// pointer to this object
dsp_add( bintrim_arg_perform, 6, sig[ 0 ]->s_vec, sig[ 1 ]->s_vec, sig[ 2 ]->s_vec, sig[ 3 ]->s_vec, sig[ 0 ]->s_n, object );
}
//------------------------------------------------------------------------------
// bintrim_new - instantiates a copy of this object in pd
//------------------------------------------------------------------------------
static void* bintrim_new( t_symbol* selector, t_int items, t_atom* list )
{
if( items )
{
// create a pointer to this object
t_bintrim* object = ( t_bintrim* )pd_new( bintrim_arg_class );
// create three additional signal inlets
signalinlet_new( &object->object, object->inlet_2 );
// create two float inlets
floatinlet_new( &object->object, &object->bin_min );
floatinlet_new( &object->object, &object->bin_max );
// create two signal outlets
outlet_new( &object->object, gensym( "signal" ) );
outlet_new( &object->object, gensym( "signal" ) );
// initialize inlet variables
object->inlet_1 = 0;
object->inlet_2 = 0;
// parse initialization arguments
//----------------------------------------------------------------------
if( items > 0 )
{
if( list[ 0 ].a_type == A_FLOAT )
{
object->bin_min = atom_getfloatarg( 0, ( int )items, list );
}
else
{
pd_error( object, "bintrim~: invalid argument 1 type" );
object->bin_min = 0;
}
}
if( items > 1 )
{
if( list[ 1 ].a_type == A_FLOAT )
{
object->bin_max = atom_getfloatarg( 1, ( int )items, list );
}
else
{
pd_error( object, "bintrim~: invalid argument 2 type" );
object->bin_max = 65536;
}
}
if( items > 2 )
{
post( "bintrim~: extra arguments ignored" );
}
return object;
}
else
{
// create a pointer to this object
t_bintrim* object = ( t_bintrim* )pd_new( bintrim_class );
// create three additional signal inlets
signalinlet_new( &object->object, object->inlet_2 );
signalinlet_new( &object->object, object->bin_min );
signalinlet_new( &object->object, object->bin_max );
// create two signal outlets
outlet_new( &object->object, gensym( "signal" ) );
outlet_new( &object->object, gensym( "signal" ) );
// initialize memory pointers
object->in1_temp = NULL;
object->in2_temp = NULL;
// initialize the float inlet variables
object->inlet_1 = 0;
object->inlet_2 = 0;
object->bin_min = 0;
object->bin_max = 65536;
return object;
}
}
//------------------------------------------------------------------------------
// bintrim_free - cleans up memory allocated by this object
//------------------------------------------------------------------------------
static void bintrim_free( t_bintrim* object )
{
// if memory is allocated
if( object->in1_temp )
{
// deallocate the memory
free( object->in1_temp );
// set the memory pointer to null
object->in1_temp = NULL;
}
if( object->in2_temp )
{
free( object->in2_temp );
object->in2_temp = NULL;
}
}
//------------------------------------------------------------------------------
// bintrim_tilde_setup - describes the attributes of this object to pd so it may be properly instantiated
// (must always be named with _tilde replacing ~ in the object name)
//------------------------------------------------------------------------------
void bintrim_tilde_setup( void )
{
// bintrim class
//--------------------------------------------------------------------------
// creates an instance of this object and describes it to pd
bintrim_class = class_new( gensym( "bintrim~" ), ( t_newmethod )bintrim_new, ( t_method )bintrim_free, sizeof( t_bintrim ), 0, A_GIMME, 0 );
// declares leftmost inlet as a signal inlet
CLASS_MAINSIGNALIN( bintrim_class, t_bintrim, inlet_1 );
// installs bintrim_dsp so that it will be called when dsp is turned on
class_addmethod( bintrim_class, ( t_method )bintrim_dsp, gensym( "dsp" ), 0 );
// bintrim arg class
//--------------------------------------------------------------------------
// creates an instance of this object and describes it to pd
bintrim_arg_class = class_new( gensym( "bintrim~" ), 0, 0, sizeof( t_bintrim ), 0, 0, 0 );
// declares leftmost inlet as a signal inlet
CLASS_MAINSIGNALIN( bintrim_arg_class, t_bintrim, inlet_1 );
// installs bintrim_arg_dsp so that it will be called when dsp is turned on
class_addmethod( bintrim_arg_class, ( t_method )bintrim_arg_dsp, gensym( "dsp" ), 0 );
}
//------------------------------------------------------------------------------
// EOF
//------------------------------------------------------------------------------
// Pd Spectral Toolkit
//
// bintrim~.c
//
// Passes bins within an arbitrary range and zeroes the rest
//
// Created by Cooper on 8/28/12.
// Updated for 64 Bit Support in September 2019.
// Copyright (C) 2019 Cooper Baker. All Rights Reserved.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// headers
//------------------------------------------------------------------------------
// main header for pd
#include "m_pd.h"
// utility header for Pd Spectral Toolkit project
#include "utility.h"
// disable compiler warnings on windows
#ifdef NT
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#endif
//------------------------------------------------------------------------------
// bintrim_class - pointer to this object's definition
//------------------------------------------------------------------------------
static t_class* bintrim_class;
static t_class* bintrim_arg_class;
//------------------------------------------------------------------------------
// bintrim - data structure holding this object's data
//------------------------------------------------------------------------------
typedef struct bintrim
{
// this object - must always be first variable in struct
t_object object;
// needed for CLASS_MAINSIGNALIN macro call in in_tilde_setup
t_float inlet_1;
// needed for signalinlet_new call in bintrim_new
t_float inlet_2;
// min / max bin numbers
t_float bin_min;
t_float bin_max;
// pointers to temporary signal vector arrays
t_float* in1_temp;
t_float* in2_temp;
// memory size of a signal vector block
t_int memory_size;
} t_bintrim;
//------------------------------------------------------------------------------
// function prototypes
//------------------------------------------------------------------------------
static t_int* bintrim_perform ( t_int* io );
static t_int* bintrim_arg_perform ( t_int* io );
static void bintrim_dsp ( t_bintrim* object, t_signal** sig );
static void bintrim_arg_dsp ( t_bintrim* object, t_signal** sig );
static void* bintrim_new ( t_symbol* selector, t_int items, t_atom* list );
static void bintrim_free ( t_bintrim* object );
void bintrim_tilde_setup ( void );
//------------------------------------------------------------------------------
// bintrim_perform - the signal processing function of this object
//------------------------------------------------------------------------------
static t_int* bintrim_perform( t_int* io )
{
// store variables from dsp input/output array
t_float* in1 = ( t_float* )( io[ 1 ] );
t_float* in2 = ( t_float* )( io[ 2 ] );
t_float* in3 = ( t_float* )( io[ 3 ] );
t_float* in4 = ( t_float* )( io[ 4 ] );
t_float* out1 = ( t_float* )( io[ 5 ] );
t_float* out2 = ( t_float* )( io[ 6 ] );
t_int frames = ( t_int )( io[ 7 ] );
t_bintrim* object = ( t_bintrim* )( io[ 8 ] );
// temp signal vectors
t_float* in1_temp = object->in1_temp;
t_float* in2_temp = object->in2_temp;
// memory copying variables
t_int mem_copy_size = object->memory_size;
t_int mem_clip_size;
t_int offset;
// store local copies of min/max bin numbers
t_int bin_min = in3[ 0 ];
t_int bin_max = in4[ 0 ];
// constrain and store object clip parameters
bin_min = Clip( bin_min, 0, frames - 1 );
bin_max = Clip( bin_max, 0, frames - 1 );
// calculate mem_size and offset for memcpy
if( bin_max < bin_min )
{
mem_clip_size = ( ( bin_min - bin_max ) + 1 ) * sizeof( t_float );
offset = bin_max;
}
else
{
mem_clip_size = ( ( bin_max - bin_min ) + 1 ) * sizeof( t_float );
offset = bin_min;
}
// copy inlet memory
memcpy( in1_temp, in1, mem_copy_size );
memcpy( in2_temp, in2, mem_copy_size );
// clear outlet memory
memset( out1, 0, mem_copy_size );
memset( out2, 0, mem_copy_size );
// copy values within clip range to outlets
memcpy( &( out1[ offset ] ), &( in1_temp[ offset ] ), mem_clip_size );
memcpy( &( out2[ offset ] ), &( in2_temp[ offset ] ), mem_clip_size );
// return the dsp input/output array address plus one more than its size
// to provide a pointer to the next perform function in pd's call list
return &( io[ 9 ] );
}
//------------------------------------------------------------------------------
// bintrim_arg_perform - the signal processing function of this object
//------------------------------------------------------------------------------
static t_int* bintrim_arg_perform( t_int* io )
{
// store variables from dsp input/output array
t_float* in1 = ( t_float* )( io[ 1 ] );
t_float* in2 = ( t_float* )( io[ 2 ] );
t_float* out1 = ( t_float* )( io[ 3 ] );
t_float* out2 = ( t_float* )( io[ 4 ] );
t_int frames = ( t_int )( io[ 5 ] );
t_bintrim* object = ( t_bintrim* )( io[ 6 ] );
// temp signal vectors
t_float* in1_temp = object->in1_temp;
t_float* in2_temp = object->in2_temp;
// memory copying variables
t_int mem_copy_size = object->memory_size;
t_int mem_clip_size;
t_int offset;
// store local copies of min/max bin numbers
t_int bin_min = object->bin_min;
t_int bin_max = object->bin_max;
// constrain and store object clip parameters
bin_min = Clip( bin_min, 0, frames - 1 );
bin_max = Clip( bin_max, 0, frames - 1 );
// calculate mem_size and offset for memcpy
if( bin_max < bin_min )
{
mem_clip_size = ( ( bin_min - bin_max ) + 1 ) * sizeof( t_float );
offset = bin_max;
}
else
{
mem_clip_size = ( ( bin_max - bin_min ) + 1 ) * sizeof( t_float );
offset = bin_min;
}
// copy inlet memory
memcpy( in1_temp, in1, mem_copy_size );
memcpy( in2_temp, in2, mem_copy_size );
// clear outlet memory
memset( out1, 0, mem_copy_size );
memset( out2, 0, mem_copy_size );
// copy values within clip range to outlets
memcpy( &( out1[ offset ] ), &( in1_temp[ offset ] ), mem_clip_size );
memcpy( &( out2[ offset ] ), &( in2_temp[ offset ] ), mem_clip_size );
// return the dsp input/output array address plus one more than its size
// to provide a pointer to the next perform function in pd's call list
return &( io[ 7 ] );
}
//------------------------------------------------------------------------------
// bintrim_dsp - installs this object's dsp function in pd's callback list
//------------------------------------------------------------------------------
static void bintrim_dsp( t_bintrim* object, t_signal** sig )
{
// calculate memory size of signal vector for memset and realloc
t_int memory_size = sig[ 0 ]->s_n * sizeof( t_float );
// save memory_size for use in dsp loop
object->memory_size = memory_size;
// allocate enough memory to hold signal vector data
object->in1_temp = realloc( object->in1_temp, memory_size );
object->in2_temp = realloc( object->in2_temp, memory_size );
// dsp_add arguments
//--------------------------------------------------------------------------
// perform routine
// number of passed parameters
// inlet 1 sample vector
// inlet 2 sample vector
// inlet 3 sample vector
// inlet 4 sample vector
// outlet 1 sample vector
// outlet 2 sample vector
// sample frames to process (vector size)
// pointer to this object
dsp_add( bintrim_perform, 8, sig[ 0 ]->s_vec, sig[ 1 ]->s_vec, sig[ 2 ]->s_vec, sig[ 3 ]->s_vec, sig[ 4 ]->s_vec, sig[ 5 ]->s_vec, sig[ 0 ]->s_n, object );
}
//------------------------------------------------------------------------------
// bintrim_arg_dsp - installs this object's dsp function in pd's callback list
//------------------------------------------------------------------------------
static void bintrim_arg_dsp( t_bintrim* object, t_signal** sig )
{
// calculate memory size of signal vector for memset and realloc
t_int memory_size = sig[ 0 ]->s_n * sizeof( t_float );
// save memory_size for use in dsp loop
object->memory_size = memory_size;
// allocate enough memory to hold signal vector data
object->in1_temp = realloc( object->in1_temp, memory_size );
object->in2_temp = realloc( object->in2_temp, memory_size );
// dsp_add arguments
//--------------------------------------------------------------------------
// perform routine
// number of passed parameters
// inlet 1 sample vector
// inlet 2 sample vector
// outlet 1 sample vector
// outlet 2 sample vector
// sample frames to process (vector size)
// pointer to this object
dsp_add( bintrim_arg_perform, 6, sig[ 0 ]->s_vec, sig[ 1 ]->s_vec, sig[ 2 ]->s_vec, sig[ 3 ]->s_vec, sig[ 0 ]->s_n, object );
}
//------------------------------------------------------------------------------
// bintrim_new - instantiates a copy of this object in pd
//------------------------------------------------------------------------------
static void* bintrim_new( t_symbol* selector, t_int items, t_atom* list )
{
if( items )
{
// create a pointer to this object
t_bintrim* object = ( t_bintrim* )pd_new( bintrim_arg_class );
// create three additional signal inlets
signalinlet_new( &object->object, object->inlet_2 );
// create two float inlets
floatinlet_new( &object->object, &object->bin_min );
floatinlet_new( &object->object, &object->bin_max );
// create two signal outlets
outlet_new( &object->object, gensym( "signal" ) );
outlet_new( &object->object, gensym( "signal" ) );
// initialize inlet variables
object->inlet_1 = 0;
object->inlet_2 = 0;
// parse initialization arguments
//----------------------------------------------------------------------
if( items > 0 )
{
if( list[ 0 ].a_type == A_FLOAT )
{
object->bin_min = atom_getfloatarg( 0, ( int )items, list );
}
else
{
pd_error( object, "bintrim~: invalid argument 1 type" );
object->bin_min = 0;
}
}
if( items > 1 )
{
if( list[ 1 ].a_type == A_FLOAT )
{
object->bin_max = atom_getfloatarg( 1, ( int )items, list );
}
else
{
pd_error( object, "bintrim~: invalid argument 2 type" );
object->bin_max = 65536;
}
}
if( items > 2 )
{
post( "bintrim~: extra arguments ignored" );
}
return object;
}
else
{
// create a pointer to this object
t_bintrim* object = ( t_bintrim* )pd_new( bintrim_class );
// create three additional signal inlets
signalinlet_new( &object->object, object->inlet_2 );
signalinlet_new( &object->object, object->bin_min );
signalinlet_new( &object->object, object->bin_max );
// create two signal outlets
outlet_new( &object->object, gensym( "signal" ) );
outlet_new( &object->object, gensym( "signal" ) );
// initialize memory pointers
object->in1_temp = NULL;
object->in2_temp = NULL;
// initialize the float inlet variables
object->inlet_1 = 0;
object->inlet_2 = 0;
object->bin_min = 0;
object->bin_max = 65536;
return object;
}
}
//------------------------------------------------------------------------------
// bintrim_free - cleans up memory allocated by this object
//------------------------------------------------------------------------------
static void bintrim_free( t_bintrim* object )
{
// if memory is allocated
if( object->in1_temp )
{
// deallocate the memory
free( object->in1_temp );
// set the memory pointer to null
object->in1_temp = NULL;
}
if( object->in2_temp )
{
free( object->in2_temp );
object->in2_temp = NULL;
}
}
//------------------------------------------------------------------------------
// bintrim_tilde_setup - describes the attributes of this object to pd so it may be properly instantiated
// (must always be named with _tilde replacing ~ in the object name)
//------------------------------------------------------------------------------
void bintrim_tilde_setup( void )
{
// bintrim class
//--------------------------------------------------------------------------
// creates an instance of this object and describes it to pd
bintrim_class = class_new( gensym( "bintrim~" ), ( t_newmethod )bintrim_new, ( t_method )bintrim_free, sizeof( t_bintrim ), 0, A_GIMME, 0 );
// declares leftmost inlet as a signal inlet
CLASS_MAINSIGNALIN( bintrim_class, t_bintrim, inlet_1 );
// installs bintrim_dsp so that it will be called when dsp is turned on
class_addmethod( bintrim_class, ( t_method )bintrim_dsp, gensym( "dsp" ), 0 );
// bintrim arg class
//--------------------------------------------------------------------------
// creates an instance of this object and describes it to pd
bintrim_arg_class = class_new( gensym( "bintrim~" ), 0, 0, sizeof( t_bintrim ), 0, 0, 0 );
// declares leftmost inlet as a signal inlet
CLASS_MAINSIGNALIN( bintrim_arg_class, t_bintrim, inlet_1 );
// installs bintrim_arg_dsp so that it will be called when dsp is turned on
class_addmethod( bintrim_arg_class, ( t_method )bintrim_arg_dsp, gensym( "dsp" ), 0 );
}
//------------------------------------------------------------------------------
// EOF
//------------------------------------------------------------------------------